Metabolic flux analysis of plastidic isoprenoid biosynthesis in poplar leaves emitting and nonemitting isoprene.
نویسندگان
چکیده
The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus×canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-D-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.
منابع مشابه
Metabolic Flux Analysis of Plastidic Isoprenoid Biosynthesis in Poplar Leaves Emitting and Nonemitting Isoprene1[W]
Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany (A.G., Z.B., M.R., J.-P.S.); Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain (P.P., M.R.-C.); Institute of Ag...
متن کاملDimethylallyl diphosphate and geranyl diphosphate pools of plant species characterized by different isoprenoid emissions.
Dimethylallyl diphosphate (DMADP) and geranyl diphosphate (GDP) are the last precursors of isoprene and monoterpenes emitted by leaves, respectively. DMADP and GDP pools were measured in leaves of plants emitting isoprene (Populus alba), monoterpenes (Quercus ilex and Mentha piperita), or nonemitting isoprenoids (Prunus persica). Detectable pools were found in all plant species, but P. persica ...
متن کاملContribution of different carbon sources to isoprene biosynthesis in poplar leaves.
This study was performed to test if alternative carbon sources besides recently photosynthetically fixed CO2 are used for isoprene formation in the leaves of young poplar (Populus x canescens) trees. In a 13CO2 atmosphere under steady state conditions, only about 75% of isoprene became 13C labeled within minutes. A considerable part of the unlabeled carbon may be derived from xylem transported ...
متن کاملKnocking Down of Isoprene Emission Modifies the Lipid Matrix of Thylakoid Membranes and Influences the Chloroplast Ultrastructure in Poplar.
Isoprene is a small lipophilic molecule with important functions in plant protection against abiotic stresses. Here, we studied the lipid composition of thylakoid membranes and chloroplast ultrastructure in isoprene-emitting (IE) and nonisoprene-emitting (NE) poplar (Populus × canescens). We demonstrated that the total amount of monogalactosyldiacylglycerols, digalactosyldiacylglycerols, phosph...
متن کاملDiurnal and seasonal variation of isoprene biosynthesis-related genes in grey poplar leaves.
Transcript levels of mRNA from 1-deoxy-D-xylulose 5-phosphate reductoisomerase (PcDXR), isoprene synthase (PcISPS), and phytoene synthase (PcPSY) showed strong seasonal variations in leaves of Grey poplar (Populus x canescens [Aiton] Sm.). These changes were dependent on the developmental stage and were strongly correlated to temperature and light. The expression rates of the genes PcDXR and Pc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 165 1 شماره
صفحات -
تاریخ انتشار 2014